
How HPC Hardware and Software are
Evolving Towards Exascale

Kathy Yelick
Associate Laboratory Director and NERSC Director

Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley

NERSC Overview
NERSC represents science needs
• Over 4000 users, 500 projects, 500

code instances
• Over 1,600 publications in 2009
•  Time is used by university

researchers (65%), DOE Labs (25%)
and others

2	

Petaflop Hopper system, late 2010
•  High application performance
•  Nodes: 2 12-core AMD processors
•  Low latency Gemini interconnect

How and When to Move Users

107

106

105

104

103

102

10

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Franklin (N5)
19 TF Sustained
101 TF Peak

Franklin (N5) +QC
36 TF Sustained
352 TF Peak

Hopper (N6)
>1 PF Peak

10 PF Peak

100 PF Peak

1 EF Peak

P
ea

k
Te

ra
flo

p/
s

Want to avoid two paradigm disruptions on road to Exa-scale

Flat MPI
 MPI+OpenMP

 MPI+X??

 MPI+CUDA?

Exascale is about Energy
Efficient Computing

goal

usual
scaling

2005 2010 2015 2020

4

At $1M per MW, energy costs are substantial
•  1 petaflop in 2010 will use 3 MW
•  1 exaflop in 2018 at 200 MW with “usual” scaling
•  1 exaflop in 2018 at 20 MW is target

Challenges to Exascale

1)  System power is the primary constraint
2)  Concurrency (1000x today)
3)  Memory bandwidth and capacity are not keeping pace
4)  Processor architecture is an open question
5)  Programming model heroic compilers will not hide this
6)  Algorithms need to minimize data movement, not flops
7)  I/O bandwidth unlikely to keep pace with machine speed
8)  Reliability and resiliency will be critical at this scale
9)  Bisection bandwidth limited by cost and energy

Unlike the last 20 years most of these (1-7) are equally
important across scales, e.g., 100 10-PF machines

Performance Growth

Anticipating and Influencing the Future

Hardware Design

6 6

Moore’s Law Continues, but Only with
Added Concurrency

CM-5

Red
Storm

Past: 1000x performance increase was 40x
clock speed and 25x concurrency

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)
Frequency (MHz)
Power (W)
Cores

Future: All in added concurrency, include
new on-chip concurrency

Where does the Energy
(and Time) Go?

1

10

100

1000

10000

Pi
co

Jo
ul

es

now

2018

Intranode/MPI
Communication

On-chip / CMP
communication

Intranode/SMP
Communication

8

Counting flops is irrelevant, only data movement matters

9 12/16/10

Case for Lightweight Core and
Heterogeneity

0	

50	

100	

150	

200	

250	

1	 2	 4	 8	 16	 32	 64	 128	 256	

A
sy
m
m
et
ri
c	
Sp
ee
du

p	

Size	 of	 Fat	 core	 in	 Thin	 Core	 units	

F=0.999	

F=0.99	

F=0.975	

F=0.9	

F=0.5	

(256 cores)
(193 cores)

(1 core)

F is fraction of time in parallel; 1-F is serial

Chip with area for 256 thin cores

Intel QC
Nehalem

Tensil-
ica

Overall
Gain

Power
(W)

100 .1 103

Area
(mm2)

240 2 102

DP
flops

50 4 .1

Overall 104

Lightweight (thin) cores
improve energy efficiency

Ubiquitous programming model of today (MPI) will
not work within a processor chip

256 small cores 1 fat core

Memory is Not Keeping Pace

Technology trends against a constant or increasing memory per core
•  Memory density is doubling every three years; processor logic is every two
• Memory costs are dropping gradually compared to logic costs

Source: David Turek, IBM

Cost of Computation vs. Memory

Question: Can you double concurrency without doubling memory?

Source: IBM

Are GPUs the Future?
(Includes Cell and GPU)

Gainestown
Barcelona
Victoria Falls

Cell Blade
GTX280

Cache-based

GTX280-Host

Local store-based

K. Datta, M. Murphy,
V. Volkov, S. Williams ,
 J. Carter, L. Oliker.
 D. Patterson, J. Shalf,
 K. Yelick, BDK11 book

P
ow

er
 E

ffi
ci

en
cy

P
er

fo
rm

an
ce

The Roofline Performance Model

peak DP	

mul / add imbalance	

w/out SIMD	

w/out ILP	

0.5	

1.0	

1/8	

actual flop:byte ratio	

at
ta

in
ab

le
 G

flo
p/

s	

2.0	

4.0	

8.0	

16.0	

32.0	

64.0	

128.0	

256.0	

1/4	
 1/2	
 1	
 2	
 4	
 8	
 16	

Generic Machine
  The flat room is

determined by
arithmetic peak and
instruction mix

  The sloped part of the
roof is determined by
peak DRAM bandwidth
(STREAM)

  X-axis is the
computational intensity
of your computation

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

double-precision peak

double-precision peak

Arithmetic Intensity

A
tta

in
ab

le
 G

flo
p/

s

2.2x Measured BW

 & Roofline

Relative Performance
Expectations

1.7x 7-point Stencil

6.7x peak

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

single-precision peak

double-precision peak

single-precision peak

double-precision peak

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)

DP add-only

DP add-only

Relative Performance Across
Kernels

What Heterogeneity Means to Me

•  Case for heterogeneity
–  Many small cores are needed for energy efficiency and

power density; could have their own PC or use a wide SIMD
–  Need one fat core (at least) for running the OS

•  Local store, explicitly managed memory hierarchy
–  More efficient (get only what you need) and simpler to

implement in hardware
•  Co-Processor interface between CPU and

Accelerator
–  Market: GPUs are separate chips for specific domains
–  Control: Why are the minority CPUs in charge?
–  Communication: The bus is a significant bottleneck.
–  Do we really have to do this? Isn’t parallel programming

hard enough

Open Problems in Software

•  Goal: performance through parallelism
•  Locality is equally important
•  Heroic compilers unlikely solution:
•  Need better programming models that:

– Abstract machine variations
– Provide for control over what is important

•  Data movement (“communication”)
dominates running time and power

16

What’s Wrong with Flat MPI?

•  We can run 1 MPI process per core
–  This works now for Quad-Core on Franklin

•  How long will it continue working?
–  4 - 8 cores? Probably. 128 - 1024 cores? Probably not.

•  What is the problem?
–  Latency: some copying required by semantics
– Memory utilization: partitioning data for separate address

space requires some replication
•  How big is your per core subgrid? At 10x10x10, over 1/2 of the

points are surface points, probably replicated
– Memory bandwidth: extra state means extra bandwidth
– Weak scaling will not save us -- not enough memory per core
–  Heterogeneity: MPI per CUDA thread-block?

•  This means a “new” model for most NERSC users

17

Develop Best Practices in
Multicore Programming

0

2

4

6

8

10

12

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 6 12

M
em

or
y

pe
r n

od
e

(G
B

)

Ti
m

e
(s

ec
)

cores per MPI process

PARATEC
 (768 cores on Jaguar)

Time

Memory

= OpenMP thread parallelism

Conclusions so far:
•  Mixed OpenMP/MPI

saves significant
memory

•  Running time impact
varies with application

•  1 MPI process per
socket is often good

Run on Hopper next:
•  12 vs 6 cores per socket
•  Gemini vs. Seastar

18

Shared
off-chip
DRAM

Partitioned Global Address
Space Languages

Global address space: thread may directly read/write
remote data

Partitioned: data is designated as local or global
G

lo
ba

l a
dd

re
ss

 s
pa

ce
"

x: 1
y:

l: l: l:

g: m: g:

x: 5
y:

p0" p1" pn"
•  No less scalable than message passing
•  Permits sharing, unlike message passing
•  One-sided communication: never say “receive”
•  Affinity control for shared and distributed memory

Private on-
chip

Shared on-
chip

Autotuners To Handle Machine
Complexity

•  OSKI: Optimized Sparse Kernel Interface
•  Optimized for: size, machine, and matrix structure
•  Functional portability from C (except for Cell/GPUs)
  Performance portability

from install time search and
model evaluation at runtime

  Later tuning, less opaque
interface

Matrix
Vector Mul
specialized

to n,m

Triangular
Solve

specialized
to n,m

Matrix
Vector Mul
specialized

to n,m,
structure

See theses from Im, Vuduc, Williams, and Jain

OSKI
Library

OSKI
Autotuner:
code generator
+search

Performance on Median Matrix of Suite

 Communication-Avoiding
Algorithms

Consider Sparse Iterative Methods
•  Nearest neighbor communication on a mesh
•  Dominated by time to read matrix (edges) from DRAM
•  And (small) communication and global

synchronization events at each step
Can we lower data movement costs?
•  Take k steps “at once” with one matrix read
 from DRAM and one communication phase
–  Parallel implementation

 O(log p) messages vs. O(k log p)
–  Serial implementation

 O(1) moves of data moves vs. O(k)

Joint work with Jim Demmel, Mark
Hoemman, Marghoob Mohiyuddin

21

Communication-Avoiding
Algorithms

•  Sparse Iterative (Krylov Subpace) Methods
–  Nearest neighbor communication on a mesh
–  Dominated by time to read matrix (edges) from DRAM
–  And (small) communication and global

synchronization events at each step
•  Can we lower data movement costs?

–  Take k steps with one matrix read from
DRAM and one communication phase

•  Serial: O(1) moves of data moves vs. O(k)
•  Parallel: O(log p) messages vs. O(k log p)

•  Can we make communication provably optimal?
–  Communication both to DRAM and between cores
–  Minimize independent accesses (‘latency’)
–  Minimize data volume (‘bandwidth’)

Joint work with Jim
Demmel, Mark
Hoemman, Marghoob
Mohiyuddin

Bigger Kernel (Akx) Runs at Faster
Speed than Simpler (Ax)

Speedups on Intel Clovertown (8 core)

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick

“Monomial”	 basis	 [Ax,…,Akx]	 	 	
fails	 to	 converge	

	 A	 different	 polynomial	 basis	 does	 converge	

Communication-Avoiding
Krylov Method (GMRES)

Performance on 8 core Clovertown

Communication-Avoiding Dense
Linear Algebra

•  Well known why BLAS3 beats BLAS1/2: Minimizes
communication = data movement
–  Attains lower bound Ω (n3 / cache_size1/2) words moved in

sequential case; parallel case analogous
•  Same lower bound applies to all linear algebra

–  BLAS, LU, Cholesky, QR, eig, svd, compositions…
–  Sequential or parallel
–  Dense or sparse (n3 ⇒ #flops in lower bound)

•  Conventional algs (Sca/LAPACK) do much more
•  We have new algorithms that meet lower bounds

–  Good speed ups in prototypes (including on cloud)
–  Lots more algorithms, implementations to develop

–  See talk in the MIT Math Dept, December 13th
26

General Lessons

•  Early intervention with hardware designs
•  Optimize for what is important:
 energy data movement
•  Anticipating and changing the future

–  Influence hardware designs
–  Use languages that reflect abstract machine
–  Write code generators / autotuners
–  Redesign algorithms to avoid communication

•  These problems are essential for computing
performance in general

27

