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NERSC Overview 
NERSC represents science needs 
• Over 4000 users, 500 projects, 500 

code instances 
• Over 1,600 publications in 2009 
•  Time is used by university 

researchers (65%), DOE Labs (25%) 
and others 
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Petaflop Hopper system, late 2010  
•  High application performance 
•  Nodes: 2 12-core AMD processors 
•  Low latency Gemini interconnect 



How and When to Move Users 
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2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Franklin (N5) 
19 TF Sustained 
101 TF Peak 

Franklin (N5) +QC 
36 TF Sustained 
352 TF Peak 

Hopper (N6) 
>1 PF Peak 

10 PF Peak 

100 PF Peak 

1 EF Peak 

P
ea

k 
Te

ra
flo

p/
s 

Want to avoid two paradigm disruptions on road to Exa-scale 

Flat MPI 
 MPI+OpenMP 

 MPI+X?? 

 MPI+CUDA? 



Exascale is about Energy 
Efficient Computing 

goal 

usual 
scaling 

2005                                      2010                                     2015                                      2020 
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At $1M per MW, energy costs are substantial 
•  1 petaflop in 2010 will use 3 MW 
•  1 exaflop in 2018 at 200 MW with “usual” scaling 
•  1 exaflop in 2018 at 20 MW is target 



Challenges to Exascale 

1)  System power is the primary constraint 
2)  Concurrency (1000x today) 
3)  Memory bandwidth and capacity are not keeping pace 
4)  Processor architecture is an open question 
5)  Programming model  heroic compilers will not hide this 
6)  Algorithms need to minimize data movement, not flops 
7)  I/O bandwidth unlikely to keep pace with machine speed  
8)  Reliability and resiliency will be critical at this scale 
9)  Bisection bandwidth limited by cost and energy 

Unlike the last 20 years most of these (1-7) are equally 
important across scales, e.g., 100 10-PF machines 

Performance Growth 



Anticipating and Influencing the Future 

Hardware Design 
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Moore’s Law Continues, but Only with 
Added Concurrency 

CM-5 

Red 
Storm 

Past: 1000x performance increase was 40x 
clock speed and 25x concurrency 
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Future: All in added concurrency, include 
new on-chip concurrency 



Where does the Energy 
(and Time) Go? 
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Intranode/MPI 
Communication 

On-chip  / CMP 
communication 

Intranode/SMP 
Communication 
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Counting flops is irrelevant, only data movement matters 
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Case for Lightweight Core and 
Heterogeneity 
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Size	  of	  Fat	  core	  in	  Thin	  Core	  units	  

F=0.999	  

F=0.99	  

F=0.975	  

F=0.9	  

F=0.5	  

(256 cores) 
(193 cores) 

(1 core) 

F is fraction of time in parallel; 1-F is serial 

Chip with area for 256 thin cores  

Intel QC 
Nehalem 

Tensil-
ica 

Overall 
Gain 

Power 
(W) 

100 .1 103 

Area 
(mm2) 

240 2 102 

DP 
flops 

50 4 .1 

Overall 104 

Lightweight (thin) cores 
improve energy efficiency 

Ubiquitous programming model of today (MPI) will 
not work within a processor chip 

256 small cores 1 fat core 



Memory is Not Keeping Pace 

Technology trends against a constant or increasing memory per core 
•  Memory density is doubling every three years; processor logic is every two 
• Memory costs are dropping gradually compared to logic costs 

Source: David Turek, IBM 

Cost of Computation vs. Memory 

Question: Can you double concurrency without doubling memory? 

Source: IBM 



Are GPUs the Future? 
(Includes Cell and GPU) 

Gainestown 
Barcelona 
Victoria Falls 

Cell Blade 
GTX280 

Cache-based 

GTX280-Host 

Local store-based 

K. Datta, M. Murphy,  
V. Volkov, S. Williams ,  
 J. Carter, L. Oliker. 
 D. Patterson, J. Shalf, 
 K. Yelick, BDK11 book 
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The Roofline Performance Model 
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Generic Machine 
  The flat room is 

determined by 
arithmetic peak and 
instruction mix 

  The sloped part of the 
roof is determined by 
peak DRAM bandwidth 
(STREAM) 

  X-axis is the 
computational intensity 
of your computation 
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What Heterogeneity Means to Me 

•  Case for heterogeneity 
–  Many small cores are needed for energy efficiency and 

power density; could have their own PC or use a wide SIMD 
–  Need one fat core (at least) for running the OS 

•  Local store, explicitly managed memory hierarchy 
–  More efficient (get only what you need) and simpler to 

implement in hardware 
•  Co-Processor interface between CPU and 

Accelerator 
–  Market: GPUs are separate chips for specific domains 
–  Control: Why are the minority CPUs in charge?   
–  Communication: The bus is a significant bottleneck. 
–  Do we really have to do this? Isn’t parallel programming 

hard enough 



Open Problems in Software 

•  Goal: performance through parallelism 
•  Locality is equally important 
•  Heroic compilers unlikely solution: 
•  Need better programming models that: 

– Abstract machine variations 
– Provide for control over what is important 

•  Data movement (“communication”) 
dominates running time and power 
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What’s Wrong with Flat MPI? 

•  We can run 1 MPI process per core 
–  This works now for Quad-Core on Franklin 

•  How long will it continue working?  
–  4 - 8 cores? Probably.  128 - 1024 cores? Probably not. 

•  What is the problem? 
–  Latency: some copying required by semantics 
– Memory utilization: partitioning data for separate address 

space requires some replication 
•  How big is your per core subgrid?  At 10x10x10, over 1/2 of the 

points are surface points, probably replicated 
– Memory bandwidth: extra state means extra bandwidth 
– Weak scaling will not save us -- not enough memory per core 
–  Heterogeneity: MPI per CUDA thread-block? 

•  This means a “new” model for most NERSC users 
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Develop Best Practices in 
Multicore Programming 

0 

2 

4 

6 

8 

10 

12 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

2000 

1 2 3 6 12 

M
em

or
y 

pe
r n

od
e 

(G
B

) 

Ti
m

e 
(s

ec
) 

cores per MPI process 

PARATEC 
 (768 cores on Jaguar) 

Time 

Memory 

= OpenMP thread parallelism 

Conclusions so far: 
•  Mixed OpenMP/MPI 

saves significant 
memory 

•  Running time impact 
varies with application 

•  1 MPI process per 
socket is often good 

Run on Hopper next: 
•  12 vs 6 cores per socket 
•  Gemini vs. Seastar 
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Shared 
off-chip 
DRAM 

Partitioned Global Address 
Space Languages 

Global address space: thread may directly read/write 
remote data  

Partitioned: data is designated as local or global 
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•  No less scalable than message passing 
•  Permits sharing, unlike message passing 
•  One-sided communication: never say “receive”  
•  Affinity control for shared and distributed memory 

Private on-
chip 

Shared on-
chip 



Autotuners To Handle Machine 
Complexity 

•  OSKI: Optimized Sparse Kernel Interface 
•  Optimized for: size, machine, and matrix structure 
•  Functional portability from C (except for Cell/GPUs) 
  Performance portability 

from install time search and 
model evaluation at runtime 

  Later tuning, less opaque 
interface 

Matrix 
Vector Mul 
specialized 

to n,m 

Triangular 
Solve 

specialized 
to n,m 

Matrix 
Vector Mul 
specialized 

to n,m, 
structure 

See theses from Im, Vuduc, Williams, and Jain  

OSKI 
Library 

OSKI 
Autotuner: 
code generator 
+search 

Performance on Median Matrix of Suite 



 Communication-Avoiding  
Algorithms 

Consider Sparse Iterative Methods 
•  Nearest neighbor communication on a mesh 
•  Dominated by time to read matrix (edges) from DRAM 
•  And (small) communication and global 

synchronization events at each step 
Can we lower data movement costs? 
•  Take k steps “at once” with one matrix read  
     from DRAM and one communication phase 
–  Parallel implementation 

          O(log p) messages vs.  O(k log p)  
–  Serial implementation 

          O(1) moves of data  moves vs. O(k) 

Joint work with Jim Demmel, Mark 
Hoemman, Marghoob Mohiyuddin 
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Communication-Avoiding 
Algorithms 

•  Sparse Iterative (Krylov Subpace) Methods 
–  Nearest neighbor communication on a mesh 
–  Dominated by time to read matrix (edges) from DRAM 
–  And (small) communication and global 

synchronization events at each step 
•  Can we lower data movement costs? 

–  Take k steps with one matrix read from 
DRAM and one communication phase 

•  Serial: O(1) moves of data  moves vs. O(k) 
•  Parallel: O(log p) messages vs.  O(k log p)  

•  Can we make communication provably optimal? 
–  Communication both to DRAM and between cores 
–  Minimize independent accesses (‘latency’) 
–  Minimize data volume (‘bandwidth’) 

Joint work with Jim 
Demmel, Mark 
Hoemman, Marghoob 
Mohiyuddin 



Bigger Kernel (Akx) Runs at Faster 
Speed than Simpler (Ax)    

Speedups on Intel Clovertown (8 core) 

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick  



“Monomial”	  basis	  [Ax,…,Akx]	  	  	  
fails	  to	  converge	  

	  A	  different	  polynomial	  basis	  does	  converge	  



Communication-Avoiding  
Krylov Method (GMRES) 

Performance on 8 core Clovertown 



Communication-Avoiding Dense 
Linear Algebra 

•  Well known why BLAS3 beats BLAS1/2: Minimizes 
communication = data movement 
–  Attains lower bound Ω (n3 / cache_size1/2 ) words moved in 

sequential case; parallel case analogous 
•  Same lower bound applies to all linear algebra 

–  BLAS, LU, Cholesky, QR, eig, svd, compositions…  
–  Sequential or parallel 
–  Dense or sparse (n3 ⇒ #flops in lower bound) 

•  Conventional algs (Sca/LAPACK) do much more 
•  We have new algorithms that meet lower bounds 

–  Good speed ups in prototypes (including on cloud) 
–  Lots more algorithms, implementations to develop 

–  See talk in the MIT Math Dept, December 13th 
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General Lessons 

•  Early intervention with hardware designs 
•  Optimize for what is important:  
           energy  data movement  
•  Anticipating and changing the future 

–  Influence hardware designs 
–  Use languages that reflect abstract machine 
–  Write code generators / autotuners  
–  Redesign algorithms to avoid communication 

•  These problems are essential for computing 
performance in general 
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